圆筒搅拌摩擦焊在压力作用下,是在恒定或递增压力以及扭矩的作用下,利用焊接接触端面之间的相对运动在摩擦面及其附近区域产生摩擦热和塑形变形热,使及其附近区域温度上升到接近但一般低于熔点的温度区间,材料的变形抗力降低、塑性提高、界面的氧化膜破碎,在顶锻压力的作用下,伴随材料产生塑性变形及流动,通过界面的分子扩散和再结晶而实现焊接的固态焊接圆筒搅拌摩擦焊搅拌摩擦焊机械零件的金属表面由于而粘结、焊合的现象是很普遍的。在金属的切削加工和机器的高速转动过程中,常常发现两个金属零件表面,由于摩擦生热而焊接在一起的情况。
摩擦焊加工以其优质、高效、节能、无污染的技术特色,在航空、航天、核能、兵器、汽车、电力、海洋开发、机械制造等高新技术和传统产业部门得到了愈来愈广泛的应用。下面以摩擦焊接在航空航天工业与汽车工业中的应用举例说明。搅拌摩擦焊航空航天工业:随着现代高性能军用航空发动机的不断更新,其主要性能指标——推重比亦不断提高。同时对发动机的结构设计、材料及制造工艺均提出了更高的要求。国外一些先进的航空发动机制造公司已将摩擦焊接作为焊接高推重比航空发动机转子部件的主导的、典型的和标准的工艺方法。普遍认为摩擦焊是可靠、再现性好和可信赖的焊接技术。韶关圆筒搅拌摩擦焊在飞机制造中,摩擦焊接也展现了新的应用前景。AISI4340超高强度钢因其具有高的缺口敏感性和焊接脆化倾向,当用来制造飞机起落架时,国外规定不允许采用熔化焊接方法施焊,已成功地进行了4340管与4030锻件起落架、拉杆的摩擦焊接。韶关圆筒搅拌摩擦焊此外,直升飞机旋翼主传动轴的NitralloyN合金齿轮与18%高镍合金钢管轴的焊接、双金属飞机铆钉、飞机钩头螺栓等均采用了摩擦焊接,这表明摩擦焊接技术已渗透到了飞机重要承力构件的焊接领域。某航天飞机三部发动机上1800个高温合金喷射器柱全部是由摩擦焊接方法焊接到发动机上的。
焊接过程中也不需要其它焊接消耗材料,如焊条、焊丝、焊剂及保护气体等。消耗的是焊接搅拌头。圆筒搅拌摩擦焊同时,由于搅拌摩擦焊接时的温度相对较低,因此焊接后结构的残余应力或变形也较熔化焊小得多。特别是Al合金薄板熔化焊接时,结构的平面外变形是非常明显的,无论是采用无变形焊接技术还是焊后冷、热校形技术,都是很麻烦的,而且增加了结构的制造成本。圆筒搅拌摩擦焊搅拌摩擦焊主要是用在熔化温度较低的有色金属,如Al、cu等合金。这和搅拌头的材料选择及搅拌头的工作寿命有关。当然,这也和有色金属熔化焊接相对困难有关,迫使人们在有色金属焊接时寻找非熔化的焊接方法。对于延性好、容易发生塑性变形的黑色材料,经辅助加热或利用其超塑性,也有可能实现搅拌摩擦焊,但这就要看熔化焊和搅拌摩擦焊哪个技术经济指标更合理来决定。
圆筒搅拌摩擦焊搅拌头的成功设计是把搅拌摩擦焊应用在更大范围的材料和焊接更宽的厚度范围的关键。下面主要讨论一下搅拌头的发展现状.一般说来,搅拌头包括两部分:搅拌探头和轴肩,而搅拌头的材料通常都采用硬度远远高于被焊材料的材料制成,这样能够在焊接过程中将搅拌头的磨损减至最小。在初期,搅拌头形状的合理设计是获得良好机械性能焊缝的关键。关于搅拌头的发展主要集中在两个方面:一个是带螺纹的搅拌头,一个是带三个沟槽的搅拌头。本质上,这两种搅拌探头都设计成锥体,大大减少了相同半径圆柱体搅拌探头的材料卷出量,一般说来,带三沟槽的搅拌探头减小了70%,而带螺纹的搅拌探头减小了60%。圆筒搅拌摩擦焊如果使用一个确定的较小直径的搅拌探头,锥形搅拌探头比圆柱形搅拌探头更容易进入焊件而通过塑性材料,并且减小了搅拌头的应力集中和断裂可能性。
韶关圆筒搅拌摩擦焊搅拌摩擦焊优点当然还有很多,比方说这种技术在焊接的过程当中不会使用的保护气体,所以可以让成本进一步的下降,对于一些特殊的材料都可以进行焊接操作,并且在操作的过程中不会产生大量的辐射,也不会产生大量的烟尘,更不会对环境造成很严重的污染,整个焊接过程是一种绿色健康而且是安全的焊接过程。当然这种焊接技术有优点,自然也有其缺点的一面,比方说在焊接的时候需要把两个部件进行固定,通过焊接的方式会形成一个焊缝,这个焊缝的末端会留下一个孔,这个孔对于部件的外在美观会形成一定的影响,不过现在已经有了更先进的技术,可以避免这个孔的产生。韶关圆筒搅拌摩擦焊另外就是这种技术虽然说是一种比较好的技术,但是在生产过程中对于搅拌针的消耗会比较大,所以有些人就担心消耗这么多的搅拌针会不会导致成本上升,其实这种搅拌针就是一种耗材,相比较于大量的人工成本来说,这种搅拌头的成本根本就不值一提了。