自1991年英国焊接研究所发明搅拌摩擦焊开始,美国和欧洲率先使此技术用于航天运载工具的焊接,从一定程度上解决了轻质合金焊接性差的一系列问题。迄今为止,航空航天技术已是衡量一个国家国防实力乃至综合国力的重要指标。越来越多的国家投入大量的资金来发展太空运输工具,箭体材料呈轻质、高强的发展方向,国外箭体材料已经发展到第三代铝锂合金,其关键的连接技术已由最初的钨极氩弧焊发展到搅拌摩擦焊,且已成功用于美国Delta系列,Atlas系列火箭筒体、航天飞机的高质量焊接。日本三菱重工已经开发出双轴肩搅拌摩擦焊技术, 并将其应用于新型运载火箭 H-2B 贮箱的筒段的焊接。在航空领域,美国波音公司、英国空中客车公司等航空巨头公司已在飞机结构件上成功运用搅拌摩擦焊技术。美国大型军用运输机 C-17 的舱内地板和载货斜坡地板采用了搅拌摩擦焊技术;F-15战斗机尾翼整流罩也采用了搅拌摩擦焊技术;空客公司采用搅拌摩擦焊对A430大型客机翼肋进行焊接;美国月蚀公司在 Eclipse-500 型商务飞机上采用搅拌摩擦焊技术全面替代了铆钉连接结构搅拌摩擦焊技术已成为飞机制造的关键技术之一。
应用焊接过程中也不需要其它焊接消耗材料,如焊条、焊丝、焊剂及保护气体等。消耗的是焊接搅拌头。搅拌摩擦焊加工同时,由于搅拌摩擦焊接时的温度相对较低,因此焊接后结构的残余应力或变形也较熔化焊小得多。特别是Al合金薄板熔化焊接时,结构的平面外变形是非常明显的,无论是采用无变形焊接技术还是焊后冷、热校形技术,都是很麻烦的,而且增加了结构的制造成本。搅拌摩擦焊主要是用在熔化温度较低的有色金属,如Al、cu等合金。这和搅拌头的材料选择及搅拌头的工作寿命有关。当然,这也和有色金属熔化焊接相对困难有关,迫使人们在有色金属焊接时寻找非熔化的焊接方法。对于延性好、容易发生塑性变形的黑色材料,经辅助加热或利用其超塑性,也有可能实现搅拌摩擦焊,但这就要看熔化焊和搅拌摩擦焊哪个技术经济指标更合理来决定。
搅拌针的尺寸(包括轴肩长度,针的长度和半径与板材的匹配性),焊速,转速倾角;摩擦焊通常由如下四个步骤构成:1、机械能转化为热能;2、材料塑性变形;3、热塑性下的锻压力;4、分子间扩散再结晶。摩擦焊相较传统熔焊大的不同点在于整个焊接过程中,待焊金属获得能量升高达到的温度并没有达到其熔点,即金属是在热塑性状态下实现的类锻态固相连接。相对传统熔焊,摩擦焊具有焊接接头质量高——能达到焊缝强度与基体材料等强度,焊接效率高、质量稳定、一致性好,可实现异种材料焊接等。
搅拌摩擦焊在有色金属的连接中已获得成功的应用,但由于焊接方法特点的限制,仅限于结构简单的构件,如平直的结构或圆筒形结构的焊接,而且在焊接过程中工件要有良好的支撑或村垫。原则上,搅拌摩擦焊可进行多种位置焊接,如平焊,立焊,仰焊和俯焊;可完成多种形式的焊接接头,如对接、角接和搭接接头,甚至厚度变化的结构和多层材料的连接,也可进行异种金属材料的焊接。另外,搅拌摩擦焊作为一种固相焊接方法,焊接前及焊接过程中对环境的污染小。焊前工件无需严格的表面清理准备要求,焊接过程中的摩擦和搅拌可以去除焊件表面的氧化膜,焊接过程中也无烟尘和飞溅.同时噪声低。由于搅拌摩擦焊仅仅是靠焊头旋转并移动,逐步实现整条焊缝的焊接,所以比熔化焊甚至常规摩擦焊更节省能源。
近年来,为了适应新材料与新结构的应用,国内外在摩擦焊接及相关技术方面取得了重要进展,其中以线性摩擦焊(LinearFriction Welding)、摩擦堆焊(Consumable RodFrictionsurfacing)、搅拌摩擦焊(FrictionStir Welding)、摩擦塞焊(Friction Plug Welding)等被称为是“科学摩擦(Science Friction)的先进摩擦焊接技术具代表性。 摩擦焊技术在国内的发展及应用状况 摩擦焊是焊接大家族中的一名重要成员,是一种金属固相热压焊方法。它是把两种焊件的结合面作相对高速运动,借助于摩擦热使接触部分达到塑性状态,再经加压而连接成一体的一种工艺方法。 摩擦焊接在中国的发展,目前在基础技术研究,工程化开发,设备制造等方面已经取得了一定的成绩,并在迅速发展,面对中国在航天,航空,铁路,船舶,能源等领域的远景规划和长远发展,以及潜在的巨大市场需求,摩擦焊接在未来几年内将迎来快速发展和应用的高峰。